On Self-adjointness of a Schrödinger Operator on Differential Forms

نویسندگان

  • Maxim Braverman
  • MAXIM BRAVERMAN
چکیده

Let M be a complete Riemannian manifold and let Ω•(M) denote the space of differential forms on M . Let d : Ω(M) → Ω(M) be the exterior differential operator and let ∆ = dd + dd be the Laplacian. We establish a sufficient condition for the Schrödinger operator H = ∆ + V (x) (where the potential V (x) : Ω(M) → Ω(M) is a zero order differential operator) to be self-adjoint. Our result generalizes a theorem by I. Oleinik about self-adjointness of a Schrödinger operator which acts on the space of scalar valued functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Black-Scholes equation; method of Heir-equations‎, ‎nonlinear self-adjointness and conservation laws

In this paper, Heir-equations method is applied to investigate nonclassical symmetries and new solutions of the Black-Scholes equation. Nonlinear self-adjointness is proved and infinite number of conservation laws are computed by a new conservation laws theorem.

متن کامل

Essential self–adjointness of symmetric linear relations associated to first order systems

The purpose of this note is to present several criteria for essential self– adjointness. The method is based on ideas due to Shubin. This note is divided into two parts. The first part deals with symmetric first order systems on the line in the most general setting. Such a symmetric first order system of differential equations gives rise naturally to a symmetric linear relation in a Hilbert spa...

متن کامل

A remark on papers by Shubin on classical and quantum completeness

Let M be a complete Riemannian manifold and D : C∞ 0 (E) → C∞ 0 (F ) a first order differential operator acting between sections of the hermitian vector bundles E, F . Moreover, let V : C∞(E) → L∞ loc (E) be a self–adjoint zero order differential operator. We give a sufficient condition for the Schrödinger operator H = DD + V to be essentially self–adjoint. This generalizes recent work of I. Ol...

متن کامل

One-dimensional Schrödinger Operators with Δ′-interactions on Cantor-type Sets

We introduce a novel approach for defining a δ′-interaction on a subset of the real line of Lebesgue measure zero which is based on Sturm– Liouville differential expression with measure coefficients. This enables us to establish basic spectral properties (e.g., self-adjointness, lower semiboundedness and spectral asymptotics) of Hamiltonians with δ′-interactions concentrated on sets of complica...

متن کامل

Essential self-adjointness for semi-bounded magnetic Schrödinger operators on non-compact manifolds

We prove essential self-adjointness for semi-bounded below magnetic Schrödinger operators on complete Riemannian manifolds with a given positive smooth measure which is fixed independently of the metric. This is an extension of the Povzner–Wienholtz theorem. The proof uses the scheme of Wienholtz but requires a refined invariant integration by parts technique, as well as a use of a family of cu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998